Evolution of fracture permeability through fluid–rock reaction under hydrothermal conditions
نویسندگان
چکیده
We report flow-through experiments on a natural fracture in novaculite under moderate effective stresses (∼1.4 MPa) and temperatures (20–120 °C) to examine the effect on flow and transport characteristics. The efflux of fluid and dissolved minerals were measured throughout the 3150-h experiment. After the experiment the fracture was imaged by X-ray CT, impregnated with Wood's metal, and a cast recovered of the Wood's metal-filled fracture. These measurements constrain the evolution of fracture structure, and the change in permeability that resulted from stressand temperature-dependent dissolution at both propping asperities and fracture void surfaces. During the first 1500 h, the aperture of one fracture decreased from 18.5 to 7.5 μm, when it was loaded with constant effective stress of 1.4 MPa, at room temperature, and a flow rate decreasing with time from 1 to 0.0625 mL/min. This reduction is attributed to the removal of mineral mass from bridging asperities. After 1500 h the fracture aperture increased, ultimately reaching 13 μm. Apparently the dominant dissolution process switched from prop removal to etching of the void surfaces. We used X-ray CT images, digital radiographs, and fracture casts as independent methods to constrain the resulting architecture of the evolved fracture porosity, and developed a simple process-based model to examine the relative roles of asperity removal and free-face dissolution. The comparison of the model with the measurements identifies the relative importance of mass removal at fracture faces and at propping asperities. The experiments underscore the importance of dissolution in determining the sense, the rates and the magnitude of permeability-enhancement within rock fractures stimulated by chemical permeants in geothermal and petroleum reservoirs, and to a lesser degree under natural conditions pushed far-from-equilibrium. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Hydrothermal Fluid Flow and Mineral Alteration in a Fractured Rock under Multiphase
The geochemical evolution of hydrothermal fractured rock systems occurs through a complex interplay of multi-phase fluid and heat flow, and chemical transport processes. On the basis of previous work we present simulations of reactive hydrothermal flow that include (1) detailed fracture-matrix interaction for fluid, heat and chemical constituents, (2) gas phase participation in multiphase fluid...
متن کاملA numerical model simulating reactive transport and evolution of fracture permeability
A numerical model is presented to describe the evolution of fracture aperture (and related permeability) mediated by the competing chemical processes of pressure solution and free-face dissolution/precipitation; pressure (dis)solution and precipitation effect net-reduction in aperture and free-face dissolution effects netincrease. These processes are incorporated to examine coupled thermo-hydro...
متن کاملMartian post-impact hydrothermal systems incorporating freezing
0019-1035/$ see front matter 2010 Elsevier Inc. A doi:10.1016/j.icarus.2010.01.013 * Corresponding author. E-mail address: [email protected] (C.J. Barnhar We simulate the evolution of post-impact hydrothermal systems within 45 km and 90 km diameter craters on Mars. We focus on the effects of freezing, which alters the permeability structure and fluid flow compared with unfrozen cases. Discha...
متن کاملRelationship between fracture dip angle, aperture and fluid flow in the fractured rock masses
Most of the Earth's crust contains fluids, and fractures are common throughout the upper part. They exist at a wide range of scales from micro-fractures within grains to major faults and shear zones that traverse the crust. In this paper, the stress-dependent permeability in fractured rock masses have been investigated considering the effects of nonlinear normal deformation and shear dilation o...
متن کاملSubsurface Propagation of Thermo-mechanical Fracture Shock Waves in Hydrothermal Regimes
In this paper a one-dimensional analytical model for the mechanism of rock fracturing in hydrothermal regimes is described. The model is based upon the modern thermo-poro-elasticity theory and its two non-linear heat-like equations. On the boundary aquifer-caprock a buried thermomechanical source is supposed to be built up in terms of subsurface fluid-rock coupling dynamics. With this considera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006